Copyright 1997 Randy Glasbergen. www.glasbergen.com

"I forgot to make a back-up copy of my brain, so everything I learned last semester was lost."

Don't let this happen to you!!

BELLRINGER

What happens, if in recording your grade, a teacher transposes the numbers for your 91 test grade?

Sometimes a small mistake can have a big effect!

 KEY CONCEPT - <u>Mutations</u> are changes in DNA that may or may not affect phenotype (physical characteristics).
 EQ – How can mutations affect an organism's traits?

8.7 Mutations

Significance of Mutations

- Most are neutral
 - Eye color
 - Birth marks
- Some are harmful
 - Sickle Cell Anemia
 - Down Syndrome
- Some are beneficial
 - Sickle Cell Anemia to Malaria
 - Immunity to HIV

Some mutations affect a <u>single gene</u>, while others affect an <u>entire chromosome</u>.

- A mutation is a change in an organism's DNA.
- Many kinds of mutations can occur, especially during replication.
- A type of **point mutation substitutes** one nucleotide for another (called a *substitution* does not affect the reading frame.).

POINT MUTATIONS:

- Point Mutations changes in one or a few nucleotides that do not change the reading frame
 - Substitution

THE FAT CAT ATE THE RAT THE FAT HAT ATE THE RAT

Insertion of 3 bases

THE FAT CAT ATE THE RAT THE FAT CAT XLW ATE THE RAT

– Deletion of 3 bases

THE FAT CAT ATE THE RAT THE FAT ATE THE RAT

Point mutation

8.7 Mutations

Point Mutation

- Sickle Cell Anemia is the result of one nucleotide substitution
- Occurs in the hemoglobin gene

A <u>frameshift mutation</u> inserts or <u>deletes</u> a nucleotide(s) in the DNA sequence, *changing the reading frame*.

 Frameshift Mutations – shifts the <u>reading frame</u> of the genetic message so that the <u>protein</u> may not be able to perform its – <u>function.</u>

Insertion

THE FAT CAT ATE THE RAT THE FAT HCA TAT ETH ERA T

– Deletion

THE FAT CAT ATE THE RAT TEF ATC ATA TET HER AT

Insertion

- <u>Chromosomal mutations</u> affect many genes (we will look at these more in depth when we cover genetic disorders).
 - Chromosomal mutations may occur during <u>crossing over</u> (prophase I of meiosis I)
 - Chromosomal mutations affect many genes.
 - Gene duplication results from <u>unequal crossing over</u>.
 Gene duplication

- <u>Nondisjunction</u> is another form of chromosomal mutation.
 - Occurs during meiosis when sister chromatids do not separate properly in Meiosis
 I.
 - One gamete has 2 copies of the chromosomes and the other gamete has none.
 - Down's Syndrome is caused by the gamete (typically the egg) that has two copies of chromosome #21. The resultant embryo would have <u>3</u> copies of #21 instead of two (Called <u>Trisomy 21</u>).

Mutations may or may not affect phenotype (physical characteristics).

- Chromosomal mutations tend to have a big effect.
- Some gene mutations change phenotype.
 - A mutation may cause a premature stop codon.
 - A mutation may change protein shape or the active site.
 - A mutation may change gene regulation.

CYSTIC FIBROSIS - a genetic disease most commonly caused by a specific deletion – the most common one is a DNA deletion of a TTT sequence. It causes an overproduction of thick, sticky mucus.

8.7 Mutations

- There are two ways in which DNA can become mutated:
 - Mutations can be inherited.
 Parent to child
 - Mutations can be acquired.
 Environmental damage
 Mistakes when DNA is copied

Mutations can be caused by several factors.

- 1. <u>Replication errors</u> can cause mutations.
- 2. <u>Mutagens</u>, such as UV light rays and chemicals, can cause mutations.
- 3. Some cancer drugs use mutagenic properties to kill cancer cells.

Rachel Carson was one of the first ecologists to warn against the widespread use of pesticides and other potential mutagens & toxins. © Original Artist Reproduction rights obtainable from www.CartoonStock.com

SCHWADE YOUR CASE WOULD MAKE & GREAT MEDICAL JOURNAL ARTICLE, BUT FRANKLY, THE NATIONAL ENQUIRER PAYS MORE ."

63

8.7 Mutations The genetic code matches each RNA codon with its amino acid or function.

Find the first base, C,	
in the left column.	

First bas

2 Find the second base, A, in the top row. Find the box where these two intersect.

3 Find the third base, U, in the right column. CAU codes for histidine, abbreviated as His.

0.0	Second base										
	U			c	2	A		G			
Ŭ	UUU UUC UUA UUG	phenylalanine (Phe) leucine (Leu)	UCU UCC UCA UCG	serine (Ser)	UAU UAC UAA UAG	tyrosine (Tyr) STOP STOP	UGU UGC UGA UGG	cysteine (Cys) STOP tryptophan (Trp)	U C A G		
C	CUU CUC CUA CUG	leucine (Leu)	CCU CCC CCA CCG	proline (Pro)	CAU CAC CAA CAG	histidine (His) glutamine (Gln)	CGU CGC CGA CGG	arginine (Arg)	U C A G	Third	
A	AUU AUC AUA AUG	isoleucine (Ile) methionine (Met)	ACU ACC ACA ACG	threonine (Thr)	AAU AAC AAA AAG	asparagine (Asn) lysine (Lys)	AGU AGC AGA AGG	serine (Ser) arginine (Arg)	U C A G	base	
y G	GUU GUC GUA GUG	valine (Val)	GCU GCC GCA GCG	alanine (Ala)	GAU GAC GAA GAG	aspartic acid (Asp) glutamic acid (Glu)	GGU GGC GGA GGG	glycine (Gly)	U C A G		