Beyond Mendel's Laws

Incomplete Dominance
Co-dominance and
Multiple Alleles

Mendel's Studies

- He found ...
- that inherited traits were either dominant or recessive
- Dominant alleles expresses over the recessive always

Review: Dominant/Recessive

- One allele is dominant over the other (capable of masking the recessive allele)

$\mathbf{P P}=$ purple

pp = white

$$
\mathbf{P p}=\text { purple }
$$

Review Problem: Dominant/Recessive

- In pea plants, purple flowers (P) are dominant over white flowers (p) show the cross between two heterozygous plants.

GENOTYPES:

- PP (1); Pp (2); pp (1) $\quad \mathbf{P}$
- ratio 1:2:1

PHENOTYPES:

- purple (3); white (1)
- ratio 3:1

Are there always dominants and recessives?

- Not all traits are purely dominant or purely recessive
- In some cases, neither are dominant
- When this happens it is known as Incomplete dominance

Lucky........ I guess so?

- Why was Mendel lucky?
- Think back to the traits he chose, what was special about them?
- They all had a dominant and recessive allele and expressed either on or the other
- But what happens when this does not happen

So what do you think?

- If neither trait is dominant, what do you think happens?
- Do they both show?
- Neither?
- A Mixture?
- Well, in actuality, there is a mixture of traits

Blending of the Traits

- The blending give intermediate expression
- What is intermediate expression?
- New phenotypes that are shown when incomplete dominance of genes occurs
- In what sorts of individuals can this happen?
- Only in the heterozygous individuals, but why?

Why only in heterozygotes

- We know that homozygous individuals have the same allele for both trait (BB or bb)
- Heterozygous individuals have different alleles for both traits and therefore both of the traits share in expression levels producing some hybrid traits

Incomplete Dominance

- A third (new) phenotype appears in the heterozygous condition
$\mathbf{R R}=\mathbf{r e d}$
$\mathbf{R}^{\prime} \mathbf{R}^{\prime}=$ white
$R^{\prime}{ }^{\prime}=$ pink

Example Cross

Real Life Examples

Snapdragon

Roses

Carnation

Problem: Incomplete Dominance

- Show the cross between a pink and a white flower.

GENOTYPES:

- Rr (2); rr (2)
- ratio 1:1 PHENOTYPES:
- pink (2); white (2)
- ratio 1:1

Why does it happen?

- Individuals with a single R (ie., RR') allele are unable to make enough red pigment to produce the red flowers
- Individuals that are white produce no red pigment

What have we seen?

- We have seen now that some alleles can be dominant, others recessive, and some are not, and we call these incomplete dominant
- Are there any other combinations of alleles that we may be interested in looking at?

What about this

- Is there a possibility that two alleles for the same trait can both be dominant?
- Short answer yes
- But what does this mean for expression?
- Are the individuals going to take one over another
- Neither?
- Both?

Expression

- When we have two alleles that are both dominant we actually get expression of both
- We will use the example of chickens
- Some chickens are black
- Some chickens are white

Expression

Example

Co-dominance in Humans

- The heterozygous condition, both alleles are expressed equally
- Sickle Cell Anemia in Humans

Human Example Electron Micrograph

- Individuals with NS are also called carriers

-This means that they carry the gene for sickle cell anemia, but it is not expressed to its fullest extent

Think Back

- Could changes in an individual be good for an individual in some cases?
- Yes! Of course they could
- What is an advantage of having sickle cell anemia?
- Individuals with this become immune to malaria

Problem: Co-dominance

- Show the cross between an individual with sicklecell anemia and another who is a carrier but not sick.

GENOTYPES:

- NS (2) SS (2)
- ratio 1:1

PHENOTYPES:

- carrier (2); sick (2)
- ratio $1: 1$

Another Tally

- So far we have looked at dominance, recessiveness, Incomplete dominance and Co-Dominance
- But what do all of these have in common despite their differences
- They all use two possible allele types
- It either it is or it is not

Actuality

TO BE OR NOT TO BE

That is the question Or is it?

What are the other possibilities

- Is there a remote possibility that no alleles could be present but expression happens
- No that is not possible
- What about if there are more than two alleles, is that possible
- Yes of course

Creatively this is called

Multiple Alleles

What does that mean?

- Many genes that control specific traits have more than two alleles
- This means that there are far more possibilities for different phenotypes

MORE VARIABILITY

Multiple Alleles Example

- What trait can you think of in humans that can be a multiple allele?
- Blood type in humans
- What are the possible Blood Alleles?
- A, B, O
- What about the Blood Types?
- Type A, Type B, Type AB, Type \mathbf{O}

Rules for Blood Type

- A and B are co-dominant
- AA = Type A
- BB = Type B
- AB = Type AB
- A and B are dominant over O
- AO = type A
- BO = type B
- OO = type O

Co-dominance

- What did we say was co-dominance?
- It was when there was more than one allele present that was dominant and both were expressed
- What about dominance
- When one allele is more dominant that another and will be expressed over another

How does this account for bloods alleles?

- A, B, and O are the alleles
- If A and B are co-dominant, then when they are both present they will be represented with A and B giving us blood type AB
- When A and O and B and O are present you get $A O$ and $B O$ but because A and B are dominant over O, you get blood type A and blood type B

The universal donor

- When you have two of the O blood alleles, you get OO giving you blood type O
- This is known as the universal donor

What these code for

- The genes determine what kind of glycoprotein your blood cell has on the surface
- Blood Type A - only A glycoproteins
- Blood Type B - only B glycoproteins
- Blood Type AB - has both
- Blood Type O - has neither

Problem: Multiple Alleles

- Show the cross between a mother who has type O blood and a father who has type AB blood.

```
GENOTYPES:
- AO (2) BO (2)
- ratio 1:1
```

PHENOTYPES:

- type A (2); type B (2)
- ratio $1: 1$

Problem: Multiple Alleles

- Show the cross between a mother who is heterozygous for type B blood and a father who is heterozygous for type A blood. GENOTYPES:
-AB (1); BO (1);
AO (1); OO (1)
- ratio 1:1:1:1

PHENOTYPES:
-type AB (1); type B (1) type A (1); type O (1)

- ratio 1:1:1:1

In Class Work - Use it Wisely

- Read Pages 204-207
- Complete Questions on worksheet

