Beyond Mendel's Laws

Incomplete Dominance Co-dominance and Multiple Alleles

Mendel's Studies

- He found ...
 - that inherited traits were either dominant or recessive
 - Dominant alleles expresses over the recessive always

Review: Dominant/Recessive

• One allele is dominant over the other (capable of masking the recessive allele)

Review Problem: Dominant/Recessive

 In pea plants, purple flowers (P) are dominant over white flowers (p) show the cross between two heterozygous plants.

Are there always dominants and recessives?

- Not all traits are purely dominant or purely recessive
- In some cases, neither are dominant
- When this happens it is known as Incomplete dominance

Lucky..... I guess so?

- Why was Mendel lucky?
 - Think back to the traits he chose, what was special about them?
 - They all had a dominant and recessive allele and expressed either on or the other
- But what happens when this does not happen

So what do you think?

- If neither trait is dominant, what do you think happens?
 - Do they both show?
 - Neither?
 - A Mixture?

• Well, in actuality, there is a mixture of traits

Blending of the Traits

- The blending give intermediate expression
- What is intermediate expression?
 - New phenotypes that are shown when incomplete dominance of genes occurs
- In what sorts of individuals can this happen?
 - Only in the heterozygous individuals, but why?

Why only in heterozygotes

- We know that homozygous individuals have the same allele for both trait (BB or bb)
- Heterozygous individuals have different alleles for both traits and therefore both of the traits share in expression levels producing some hybrid traits

Incomplete Dominance

• A third (new) phenotype appears in the heterozygous condition

Example Cross

Real Life Examples

Snapdragon

Roses

Carnation

Problem: Incomplete Dominance

• Show the cross between a pink and a white flower.

Why does it happen?

- Individuals with a single R (ie., RR') allele are unable to make enough red pigment to produce the red flowers
- Individuals that are white produce no red pigment

What have we seen?

- We have seen now that some alleles can be dominant, others recessive, and some are not, and we call these incomplete dominant
- Are there any other combinations of alleles that we may be interested in looking at?

What about this

- Is there a possibility that two alleles for the same trait can both be dominant?
 - Short answer yes
- But what does this mean for expression?
 - Are the individuals going to take one over another
 - Neither?
 - Both?

Expression

- When we have two alleles that are both dominant we actually get expression of both
- We will use the example of chickens
 - Some chickens are black
 - Some chickens are white

Expression

Example

Co-dominance in Humans

- The heterozygous condition, **both** alleles are expressed equally
- Sickle Cell Anemia in Humans

Human Example – Electron Micrograph

 Individuals with NS are also called carriers

•This means that they carry the gene for sickle cell anemia, but it is not expressed to its fullest extent

Think Back

- Could changes in an individual be good for an individual in some cases?
 - Yes! Of course they could
- What is an advantage of having sickle cell anemia?
 - Individuals with this become immune to malaria

Problem: Co-dominance

 Show the cross between an individual with sicklecell anemia and another who is a carrier but not sick.

<u>GENOTYPES:</u> - NS (2) SS (2) - ratio 1:1 <u>PHENOTYPES:</u> - carrier (2); sick (2) - ratio 1:1

Another Tally

- So far we have looked at dominance, recessiveness, Incomplete dominance and Co-Dominance
- But what do all of these have in common despite their differences
 - They all use two possible allele types
 - It either it is or it is not

Actuality

TO BE OR NOT TO BE

That is the question Or is it?

What are the other possibilities

- Is there a remote possibility that no alleles could be present but expression happens
 - No that is not possible
- What about if there are more than two alleles, is that possible
 - Yes of course

Creatively this is called

Multiple Alleles

What does that mean?

- Many genes that control specific traits have more than two alleles
- This means that there are far more possibilities for different phenotypes

MORE VARIABILITY

Multiple Alleles Example

- What trait can you think of in humans that can be a multiple allele?
 - Blood type in humans
- What are the possible Blood Alleles?
 A, B, O
- What about the Blood Types?
 Type A, Type B, Type AB, Type O

Rules for Blood Type

A and B are co-dominant

- -AA = Type A
- BB = Type B
- AB = Type AB
- A and B are dominant over O
 - AO = type A
 - -BO = type B
 - OO = type O

Co-dominance

- What did we say was co-dominance?
 - It was when there was more than one allele present that was dominant and both were expressed
- What about dominance
 - When one allele is more dominant that another and will be expressed over another

How does this account for bloods alleles?

- A, B, and O are the alleles
- If A and B are co-dominant, then when they are both present they will be represented with A and B giving us blood type AB
- When A and O and B and O are present you get AO and BO but because A and B are dominant over O, you get blood type A and blood type B

The universal donor

- When you have two of the O blood alleles, you get OO giving you blood type O
- This is known as the universal donor

What these code for

- The genes determine what kind of glycoprotein your blood cell has on the surface
 - Blood Type A only A glycoproteins
 - Blood Type B only B glycoproteins
 - Blood Type AB has both
 - Blood Type O has neither

Problem: Multiple Alleles

Show the cross between a mother who has type
 O blood and a father who has type AB blood.

Problem: Multiple Alleles

- Show the cross between a mother who is heterozygous for type B blood and a father who is heterozygous for type A blood.
 GENOTYPES:
 - -AB (1); BO (1); AO (1); OO (1) - ratio 1:1:1:1 <u>PHENOTYPES:</u> -type AB (1); type B (1) type A (1); type O (1) - ratio 1:1:1:1

In Class Work – Use it Wisely

- Read Pages 204-207
- Complete Questions on worksheet