Gas Laws

Ideal vs. Real Gases

Ideal Gas -
composed of molecules with mass, but no volume and no mutual attraction between molecules.
Real Gas - gases that occupy volume and the molecules exhibit attraction for each other.
Most gases behave ideally when their particles are far enough apart and have enough kinetic energy.
More ideal at:

- High Temperatures
- Low Pressures

Quantitative Properties of Gases

1. Number of molecules (moles)
2. Pressure
3. Volume
4. Temperature

Standard Temperature and Pressure STP

- Standard Temperature

$$
0^{\circ} \mathrm{C} \quad(273 \mathrm{~K})
$$

[Remember: $\mathrm{K}={ }^{\circ} \mathrm{C}+273$]

- Standard Pressure

1atm
760 mm Hg (torr)
101.325 kPa

Boyle's Law

If the amount and temperature of a gas remain constant, the pressure exerted by the gas varies inversely with the volume.

$$
\downarrow V \mathrm{P} \uparrow \quad \mathrm{OR} \quad \uparrow \mathrm{~V} \quad \mathrm{P} \downarrow
$$

$$
P_{1} V_{1}=P_{2} V_{2}
$$

Boyle's Practice

A gas occupies a volume of $259 \mathrm{~cm}^{3}$ at $112^{\prime} \mathrm{kPa}$.' 'What volume will gas occupy at standard pressure?
? V_{2}

$$
P_{1} V_{1}=P_{2} V_{2}
$$

$V_{1}=259 \mathrm{~cm}^{3}$
$\mathrm{P}_{1}=112 \mathrm{kPa}$
$\mathrm{P}_{2}=101.325 \mathrm{kPa}$
STP

$$
\begin{aligned}
& (112 \mathrm{kPa})\left(259 \mathrm{~cm}^{3}\right)=(101.325 \mathrm{kPa})\left(\mathrm{V}_{2}\right) \\
& \frac{29008 \mathrm{kPa} \mathrm{~cm}^{3}}{(101.325 \mathrm{kPa})}=\frac{(101.325 \mathrm{kPa})\left(\mathrm{V}_{2}\right)}{(101.325 \mathrm{kPa})}
\end{aligned}
$$

$$
V_{2}=286 \mathrm{~cm}^{3}
$$

Charles' Law

If the amount and pressure of a gas remain constant, the volume varies directly with the Kelvin temperature.

$$
\downarrow T \quad \vee \downarrow \quad O R \quad \uparrow T \quad V \uparrow
$$

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

VERY IMPORTANT

Temperature MUST, MUST, MUST be in

Charles Practice

A gas occupies $907 \mathrm{~cm}^{3}$ at $19.0^{\circ} \mathrm{C}$. If the pressure remains constant what volume will the gas occupy at standard temperature?
? V_{2}
$\mathrm{V}_{1}=907 \mathrm{~cm}^{3}$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{T}_{1}=19.0^{\circ} \mathrm{C}+273=292 \mathrm{~K}$
$\mathrm{T}_{2}=273 \mathrm{~K}$

Cross Multiply!
$(273 \mathrm{~K})\left(907 \mathrm{~cm}^{3}\right)=(292 \mathrm{~K})\left(\mathrm{V}_{2}\right)$
$\frac{\left(247611 K \mathrm{~cm}^{3}\right)}{(292 \mathrm{~K})}=\frac{\left(292 K\left(\mathrm{~V}_{2}\right)\right.}{(292 \mathrm{~K})} \quad \mathrm{V}_{2}=848 \mathrm{~cm}^{3}$

STP

Gay-Lussac's Law

If the amount and volume of a gas remain constant, the pressure varies directly with the Kelvin temperature.

$$
\downarrow T P \downarrow \quad O R \quad \uparrow T \quad P \uparrow
$$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

VERY IMPORTANT

Temperature MUST, MUST, MUST be in

Gay-Lussac Practice

A gas at 715 mmHg , has a temperature of $25.0^{\circ} \mathrm{C}$. If the volume is held constant, what will the temperature of the gas be at standard pressure?
? T_{2}
$\mathrm{P}_{1}=715 \mathrm{mmHg}$

$\mathrm{T}_{1}=25.0^{\circ} \mathrm{C}+273=298 \mathrm{~K}$
$\mathrm{P}_{2}=760 \mathrm{mmHg}$

Cross Multiply!

$$
\begin{aligned}
& \left(\mathrm{T}_{2}\right)(715 \mathrm{mmHg})=(760 \mathrm{mmHg})(298 \mathrm{~K}) \\
& \left(T_{2}\right)(715 \text { mintig })=(226480 \mathrm{mmHg} \text { K) } \\
& \text { (} 745 \mathrm{mmHg} \text {) }
\end{aligned}
$$

STP

Combined Gas Law

$$
\begin{array}{ccc}
\text { Boyle's } & \text { Charles' } & \text { Gay-Lussac's } \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} & \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
& \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
\end{array}
$$

VERY IMPORTANT

Temperature MUST, MUST, MUST be in

Combined Practice

A gas occupies 51.7 mL at $27.0^{\circ} \mathrm{C}$ and 90.9 'kPa.' ' What volume will the gas occupy at STP?
? V_{2}
$\mathrm{V}_{1}=51.7 \mathrm{~mL}$
$\mathrm{T}_{1}=27.0^{\circ} \mathrm{C}+273=300 . \mathrm{K}$
$\mathrm{P}_{1}=90.9 \mathrm{kPa}$
$\mathrm{T}_{2}=273 \mathrm{~K}$

$\mathrm{P}_{2}=101.325 \mathrm{kPa}$

$(90.9 \mathrm{kPa})(51.7 \mathrm{~mL})(273 \mathrm{~K})=(300 \mathrm{~K})(101.325 \mathrm{kPa})\left(\mathrm{V}_{2}\right)$
STP

$$
\frac{(1282971.69 \mathrm{KPa} \cdot \mathrm{~mL} \cdot \mathrm{~K})}{(30397.5 \mathrm{~K} \cdot \mathrm{KPa})}=\frac{(30397.5 \mathrm{~K} \cdot \mathrm{kPa})\left(\mathrm{V}_{2}\right)}{(30397.5 \mathrm{~K} \cdot \mathrm{kPa})}
$$

$$
\mathrm{V}_{2}=42.2 \mathrm{~mL}
$$

