## Freely Fallisig Bodies


Acceleration of a freely fallinge

## body near the surface of the earth

## depends

## on the earth's gravity.

- Since gravity on the earth may vary from place to place, the value of the acceleration may also vary, We will use an approximate value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for the acceleration of freely falling bodies (denoted by the symbol g).

Since gravity is a force that actis downward, g has a negative value.
Therefore, $a=g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{gt}$
$d=v_{i} t+1 / 2 g t^{2}$

- Example -

A stone is dropped from the top of a tall building. What is the displacement of the stone after 3.00 seconds?

- (-44.1 m)
$\lrcorner$ Falling Body Tlips

1. $g=-9.8 \mathrm{~m} / \mathrm{s} 2$
2. dropped vi=0
3. thrown down $\mathrm{vi} \neq 0$
4. vf $(d o w n w a r d) \neq 0$
5. downward displacement is negative
6. time up = time down
7. numbers coming out of a radical may be + or-

## Try these!

1. A stone is thrown vertically downward from a 200 meter cliff at an initial velocity of 5.00 $\mathrm{m} / \mathrm{s}$.
a. What is the stone's final velocity?
2. A ball is dropped from the top of a 123 m cliff. Ignoring air resistance, find:
a. the amount of time it takes for it to hit the ground below and
b. the final velocity of the ball
