EQ('s):

Q1: If you want two batches of cookies, not just one, what do you need to do to the recipe?

Q2: How does this apply to cell division?

Cell Cycle:

- The period between the "birth" and "death" of a cell.
- The cell cycle is a regular pattern of
 - growth,
 - DNA replication, and
 - cell division.

- The main stages of the cell cycle are Interphase, Mitosis and Cytokinesis.
- INTERPHASE:
 - where the cell grows and replicates (copies its DNA).
 - is composed of Gap 1, Synthesis, and Gap 2.

– Gap 1 (G₁):

- cell growth and normal functions
- Cell grows to a point and problems begin to arise:
 - 1. DNA will overload; if a cell gets too large, extra stress is put on the DNA in the cell
 - 2. Surface area cannot accommodate the volume of the cell
- Cell will have to divide

Why do cells divide?

- 1. Heal wounds
- 2. Grow new body parts
- 3. Replace dying cells
- 4. Produce eggs and sperm

– DNA synthesis (S):

- copies DNA (DNA Replication)
- More later...
- Gap 2 (G₂):
 - Cell continues to grow
 - Makes sure the cell is ready to enter mitosis

Mitosis occurs only if the cell is large enough and the DNA is undamaged.

Cells divide at different rates.

 The rate of cell division varies with the need for those types of cells.

FIGURE 5.2 CELL DIVISION			
CELL TYPE	APPROXIMATE LIFE SPAN		
Skin cell	2 weeks		
Red blood cell	4 months		
Liver cell	300–500 days		
Intestine—internal lining	4–5 days		
Intestine—muscle and other tissues	16 years		

 Some cells are unlikely to divide (G₀) – neurons and some lymphocytes rarely, infrequently, or never divide.

• Cell size is limited.

- Volume increases faster than surface area.
 - Surface area must allow for adequate exchange of materials.

Relative size	1-[2 -	3-
Surface area (length \times width \times number of sides)	6	24	54
Volume (length \times width \times height)	1	8	27
Ratio of surface area to volume	$\frac{-6}{1} = 6:1$	$\frac{-24}{8} = 3:1$	$\frac{54}{27} = 2:1$

- Q1: Which cell has the largest surface area?
- Q2: Which cell size would be most efficient for transport and completing other cell activities?

The cell cycle has four main stages.

• The cell cycle is a regular pattern of growth, DNA replication, and cell division.

Mitosis and cytokinesis produce two genetically identical daughter cells.

- 1. Interphase normal growth & functions; prepares the cell to divide.
- During the **S stage** of interphase, the DNA is duplicated.

DNA

Chromosomes condense at the start of mitosis.

• DNA wraps around proteins (histones) that condense it.

Condensed, duplicated chromosome

- Mitosis divides the cell's nucleus in four phases.
 - 2. During <u>MITOSIS: Prophase</u>, chromosomes condense and spindle fibers form.
 - Longest phase of mitosis
 - Centrioles move to opposite poles
 - Spindle fibers attach to centromeres of each chromatid
 - Near end: nucleolus disappears & nuclear envelope breaks down

duplicated — chromosomes

- Mitosis divides the cell's nucleus in four phases.
 - 3. During MITOSIS: Metaphase, chromosomes line up in the middle (equator) of the cell.
 - Very short phase
 - Microtubules connect centromeres to the poles of the spindle

- Mitosis divides the cell's nucleus in four phases.
 - 4. During MITOSIS: Anaphase, sister chromatids separate to opposite sides of the cell.
 - Centromeres that join sister chromatids separate to become individual chromosomes
 - Chromosomes continue to move until they have separated into 2 groups near the poles of the spindle
 - Anaphase ends when the chromosomes stop moving

- Mitosis divides the cell's nucleus in four phases.
 - 5. During MITOSIS: Telophase, the new nuclei form and chromosomes begin to uncoil.
 - Nuclear envelope reforms around each cluster of chromosomes
 - Spindle begins to break apart & nucleolus becomes visible

- 6. Cytokinesis differs in animal and plant cells.
 - Splitting of the cytoplasm
 - In animal cells, the membrane pinches closed.
 - In plant cells, a <u>cell</u>
 <u>plate</u> forms.

