5.1 The Cell Cycle

©EQ('s):

Q1: If you want two batches of cookies, not just one, what do you need to do to the recipe?

Q2: How does this apply to cell division?

5.1 The Cell Cycle

-Cell Cycle:

- The period between the "birth" and "death" of a cell. The cell cycle is a regular pattern of
- growth,
- DNA replication, and
- cell division.

- The main stages of the cell cycle are Interphase, Mitosis and Cytokinesis.
- INTERPHASE:
- where the cell grows and replicates (copies its DNA).
- is composed of Gap 1, Synthesis, and Gap 2.

- Gap $1\left(G_{1}\right)$:
- cell growth and normal functions
- Cell grows to a point and problems begin to arise:

1. DNA will overload; if a cell gets too large, extra stress is put on the DNA in the cell
2. Surface area cannot accommodate the volume of the cell

- Cell will have to divide

5.1 The Cell Cycle

- Why do cells divide?

1. Heal wounds
2. Grow new body parts
3. Replace dying cells
4. Produce eggs and sperm

duchamp models

- DNA synthesis (S):
- copies DNA (DNA Replication)
- More later...
- Gap $2\left(\mathrm{G}_{2}\right)$:
- Cell continues to grow
- Makes sure the cell is ready to enter mitosis
- Mitosis occurs only if the cell is large enough and the DNA is undamaged.

5.1 The Cell Cycle

- Cells divide at different rates.

- The rate of cell division varies with the need for those types of cells.

FIGURE 5.2 CELL DIVISION

CELL TYPE	APPROXIMATE LIFE SPAN
Skin cell	2 weeks
Red blood cell	4 months
Liver cell	$300-500$ days
Intestine-internal lining	$4-5$ days
Intestine-muscle and other tissues	16 years

- Some cells are unlikely to divide $\left(\mathrm{G}_{0}\right)$ - neurons and some lymphocytes rarely, infrequently, or never divide.

- Cell size is limited.

- Volume increases faster than surface area.
- Surface area must allow for adequate exchange of materials.

Relative size		24	
Surface area (length \times width \times number of sides)	6	8	54
Volume (length \times width \times height)	1	27	
Ratio of surface area to volume	$\frac{6}{1}=6: 1$	$\frac{24}{8}=3: 1$	$\frac{54}{27}=2: 1$

Q1: Which cell has the largest surface area?
Q2: Which cell size would be most efficient for transport and completing other cell activities?

5.1 The Cell Cycle

- The cell cycle has four main stages.
- The cell cycle is a regular pattern of growth, DNA replication, and cell division.

5.1 The

5.1 The Cell Cycle

- Mitosis and cytokinesis produce two genetically identical daughter cells.
nucleus with DNA

1. Interphase normal growth \& functions; prepares the cell to divide.

- During the S stage of interphase, the DNA is duplicated.

Parent cell
centrioles spindle fibers
centrosome
chromatin

5.1 The Cell Cycle

- Chromosomes condense at the start of mitosis.
- DNA wraps around proteins (histones) that condense it.

Condensed, duplicated chromosome

5.1 The Cell Cycle

- Mitosis divides the cell's nucleus in four phases.

2. During MITOSIS: Prophase, chromosomes condense and spindle fibers form.

- Longest phase of mitosis
- Centrioles move to opposite poles
- Spindle fibers attach to centromeres of each chromatid
- Near end: nucleolus disappears \& nuclear envelope breaks down
duplicated chromosomes

5.1 The Cell Cycle

- Mitosis divides the cell's nucleus in four phases.

3. During MITOSIS: Metaphase, chromosomes line up in the middle (equator) of the cell.

- Very short phase
- Microtubules connect centromeres to the poles of the spindle

5.1 The Cell Cycle

- Mitosis divides the cell's nucleus in four phases.

4. During MITOSIS: Anaphase, sister chromatids separate to opposite sides of the cell.

- Centromeres that join sister chromatids separate to become individual chromosomes
- Chromosomes continue to move until they have separated into 2 groups near the poles of the spindle
- Anaphase ends when the chromosomes stop moving

5.1 The Cell Cycle

- Mitosis divides the cell's nucleus in four phases.

5. During MITOSIS: Telophase, the new nuclei form and chromosomes begin to uncoil.

- Nuclear envelope reforms around each cluster of chromosomes
- Spindle begins to break apart \& nucleolus becomes visible

5.1 The Cell Cycle

- 6. Cytokinesis differs in animal and plant cells.
- Splitting of the cytoplasm
- In animal cells, the membrane pinches closed.
- In plant cells, a cell plate forms.

