## Chemical Reactions

## Chemical Equations

- A chemical equation is a representation of a chemical reaction; the formulas of the reactants (on the left) are connected by an arrow with the formulas of the products (on the right).
- Skeleton Equation does not indicate the amounts of reactants or products.
- No coefficients

Example

$$
\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

## All chemical reactions

- have two parts
- Reactants - the substances you start with (the ones reacting)
- Products- the substances you end up with (the ones produced)
- The reactants turn into the products.
- Reactants $\rightarrow$ Products


## Word Equations

- Example

Methane + Oxygen $\rightarrow$ Carbon dioxide + Water

- The arrow means yields, gives, or reacts to produce.


## Rules for balancing

1 Write the correct formulas for all the reactants and products
2 Count the number of atoms of each type appearing on both sides
3 Balance the elements one at a time by adding coefficients (the numbers in front)
4 Check to make sure it is balanced.

## Never

- Change a subscript to balance an equation.
If you change the formula you are describing a different reaction.
$\mathrm{H}_{2} \mathrm{O}$ is a different compound than $\mathrm{H}_{2} \mathrm{O}_{2}$ Never put a coefficient in the middle of a formula
- 2 NaCl is okay, Na 2 Cl is not.


## Practice

 $-\mathrm{H}_{2}+\ldots \mathrm{O}_{2} \rightarrow$ H $_{2} \mathrm{O}$$$
\mathrm{SO}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{SO}_{3}
$$

## Answers

$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$

## Try to balance this reaction:

$2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$


## Balance these equations

$\ldots \mathrm{Mg}+\ldots \mathrm{O}_{2} \rightarrow$ _ MgO
$\ldots \mathrm{KClO}_{3} \rightarrow \ldots \mathrm{KCl}+\ldots \mathrm{O}_{2}$
$-\mathrm{Cu}+\ldots \mathrm{AgNO}_{3} \rightarrow \ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{Ag}$ $\mathrm{KOH}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \ldots \mathrm{~K}_{3} \mathrm{PO}_{4}+\ldots \mathrm{H}_{2} \mathrm{O}$

## ANSWERS

- $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$
- $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
$\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ $3 \mathrm{KOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$

