Proportional Reasoning and Scientific Notation

Using numbers in Science

Variables!!

Knowing what variables you are working with is the starting point of Science

There are 2 major types of variables we will be dealing with:

Control Variables

Dependant Variables

Control Variables

The variable that the experimenter (you!!) is in control of changing. The experiment will not give us our Control variable

The most common example is time

We also control mass in most cases

Dependant Variable

The variable that changes as the control variable is varied; this is what is being observed / measured during the experiment

If we change the time, what distance does it travel?

Or if we change the mass, what happens to the acceleration?

Graphs

Anotherneseful topl for uderstanding how are yariables Units h confon

Example

Relationships

When we compare our control and dependant variables, we will need to understand what the relationship between them is. Are they directly related or inversely related? Could they even have a square relation?

Relationships

Directly related: As the control variable increases, the dependant variable increases at the same rate

Inversely related: as the control variable increases, the dependant variable decreases

Square relation: As the control variable increases, the dependant variable increases exponentially

Scientific Notation

In Science, we often deal with very large or very small numbers:

Speed of Light: $300,000,000 \mathrm{~m} / \mathrm{s}$
Mass of an electron:
0.00000000000000000000000000000910953 Kg

These numbers are hard to use so we use the scientific notation method

Scientific Notation

In the scientific notation method, all numbers are expressed as the product of a number between 1 and 10 and a whole number power of 10 .

Speed of Light: 3.0×10^{8} Mass of an electron: 9.11×10^{-31}

Conversions

Sometimes, it is easier to name large or small numbers using different prefixes (i.e. Kilo- or centi-)
To do this, we will need the king Henry Chart

K	H	D	B	d	c	m
i	e	i	y	r	h	i
n	n	e		i	o	l
g	r	d		n	c	k
	y			k	o	
				i	l	
				n	a	
				t		

Conversions

K	H	D	B	d	c	m
Kilo	Hecto	Deka	gram liter meter		deci	centi

Convert 2,356 grams to kilograms:

$$
\begin{array}{ll}
2.356 & 2,356
\end{array}
$$

